A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm

نویسندگان

  • Han-Xiong Huang
  • Jiong-Cheng Li
  • Cheng-Long Xiao
چکیده

An iteration optimization approach integrating backpropagation neural network (BPNN) with genetic algorithm (GA) is proposed. The main idea of the approach is that a BPNN model is first developed and trained using fewer learning samples, then the trained BPNN model is solved using GA in the feasible region to search the model optimum. The result of verification conducted based on this optimum is added as a new sample into the training pattern set to retrain the BPNN model. Four strategies are proposed in the approach to deal with the possible deficiency of prediction accuracy due to fewer training patterns used. Specifically, in training the BPNN model, the Bayesian regularization and modified Levenberg–Marquardt algorithms are applied to improve its generalization ability and convergence, respectively; elitist strategy is adopted and simulated annealing algorithm is embedded into the GA to improve its local searching ability. The proposed approach is then applied to optimize the thickness of blow molded polypropylene bellows used in cars. The results show that the optimal die gap profile can be obtained after three iterations. The thicknesses at nine teeth peaks of the bellow molded using the optimal gap profile fall into the desired range (0.7 ± 0.05 mm) and the usage of materials is reduced by 22%. More importantly, this optimal gap profile is obtained via only 23 times of experiments, which is far fewer than that needed in practical molding process. So the effectiveness of the proposed approach is demonstrated. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a Nature Inspired Firefly Algorithm based Back-propagation Neural Network Training

ABSTRACT Optimization algorithms are normally influenced by metaheuristic approach. In recent years several hybrid methods for optimization are developed to find out a better solution. The proposed work using meta-heuristic Nature Inspired algorithm is applied with back-propagation method to train a feedforward neural network. Firefly algorithm is a nature inspired meta-heuristic algorithm, and...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural network

Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...

متن کامل

Modeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm

This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...

متن کامل

Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers

Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015